APPROACH TO HEMORRHAGIC SHOCK by Nick Mark MD For the patient with shock due to blood loss

onepagericu.com **y** @nickmmark

Link to the most current version →

Increase **up to 3x** by

applying 300mmHg

1m gravity

36 ML/MIN

60 ML/MIN

85 ML/MIN

105 ML/MIN

205 ML/MIN

330 ML/MIN

15 ML/MIN

10 ML/MIN

105 MI/MIN

130 ML/MIN

of pressure

CATHETER RADIUS

CATHETER LENGTH

Radius is the most important factor that determines flow rate; Wider is better

Shorter is better; PIVs are shorter than

central lines and often achieve faster flow

rates. PICCs are useless for resuscitation.

Flow rate \propto

Think about the physics!

PRESSURE DIFFERENCE

Maximize the ΔP by using a pressure infuser (either a pressure bag, or better yet, a rapid infuser system); can increase infusion rates by up to 3x!

VISCOSITY OF FLUID

Viscosity depends on the temperature of the fluid; Use a fluid warmer (which is part of a rapid infuser system) and make sure it is actually working!

USE THE RIGHT LINES AND EQUIPMENT

from the appropriate team(s)

Activate massive transfusion protocol

Don't wait for central access to begin resuscitation; often PIVs are superior for resuscitation anyway

PLAN FOR CONTROLLING HEMORRHAGE & ACTIVATE

MASSIVE TRANSFUSION PROTOCOL

Determine how hemorrhage can be controlled

(surgical, IR, or GI intervention) and call for help

Use a pressure infuser/heater to give product faster

USE BLOOD PRODUCTS IN A BALANCED RATIO

Initially, perform hemostatic resuscitation with blood

products in a fixed ratio, e.g. 1 RBC/1 FFP/1 platelet

EXTENSIONS/CONNECTORS Each additional connection can reduce

continuously

addition to blood

other physiologic

solution to avoid

acidosis due to

hyperchloremia

products) use LR or

flow by up to 30%.

Remove caps, connectors, and extra extension sets.

INTRAOSSEOUS

Flow determined by bone location more than needle.

- Tibial is comparable to long 18 gauge PIV Humeral is comparable to long 16 gauge PIV
- Typical flow rates = 50-100 ml/min w/ pressure infuser.

Learn the color code to CATHETER EXAMPLE quickly identity PIVs Reassess 22 GA PIV

Goal is to provide an overall balanced resuscitation (but don't wait for a particular product to resuscitate)

Use hemodynamic stability (not hematocrit) as the resuscitation endpoint. Can use CBC, coags, or TEG/ROTEM to guide

additional resuscitation (see OnePager on TEG)

Other considerations

CONSIDER TXA CORRECT COAGULOPATHY Effective in trauma (w/i

- 3 hours), surgical, or obstetrical hemorrhage.
 - Also epistaxis, hemoptysis & maybe
- GIB. Not indicated for SHD or ICH.
- Initial dose 1g IV /10 min

Hypothermia inhibits

Warm resuscitation

patient if possible

fluids; apply warming to

MAINTAIN EUTHERMIA

clotting.

- Reverse anticoagulation
 - depending on agent: warfarin, DOACs, heparin, etc (protocol)
- If platelet dysfunction -> ddAVP 0.3 mcg/kg IV over 30 min

CORRECT ELECTROLYTES

Hypocalcemia is

blood products.

particularly common

due to resuscitation

with citrate containing

USE PHYSIOLOGICAL FLUID If fluids are required (in

- Acidosis inhibits clotting & decreases contractility.
- Provide sufficient MV to correct metabolic acidosis. Goal pH >7.2

VOID ACIDOSIS

INTRODUCER

0.8 mm x 1.16"

20 GA PIV

1.0 mm x 2.5"

18 GA PIV 1.0 mm x 1.16" 16 GA PIV

1.3 mm x 1.77"

1.6 mm x 1.75"

1 lumen 16 ga

18 ga x 180 mm

18 ga x 190 mm 16 ga x 200 mm

2 lumens: 18 & 22 ga

14 GA PIV

PICC 5 Fr x 20"

PICC 5 Fr x 20"

TLC

0.8 mm x 1.16" 18 GA PIV

8.5 Fr x 100 mm

RIC

8.5 Fr x 50 mm

Note, that of you place a catheter through the introducer you reduce the flow rate substantially!

(Not exactly to scale)

400 ML/MIN