For the patient with shock due to blood loss

PLAN FOR CONTROLLING HEMORRHAGE \& ACTIVATE

 MASSIVE TRANSFUSION PROTOCOL
- Activate massive transfusion protocol

- Determine how hemorrhage can be controlled (surgical, IR, or GI intervention) and call for help from the appropriate team(s)

USE THE RIGHT LINES AND EQUIPMENT

- Don't wait for central access to begin resuscitation; often PIVs are superior for resuscitation anyway
- Use a pressure infuser/heater to give product faster

CATHETER RADIUS

Radius is the most important factor that determines flow rate; Wider is better

CATHETER LENGTH

Shorter is better; PIVs are shorter than central lines and often achieve faster flow rates. PICCs are useless for resuscitation.

Flow rate $\propto \frac{r^{4} \Delta p}{L \quad \eta}$

onepagericu.com Link to the @ @ickmmark most current version \rightarrow

PRESSURE DIFFERENCE

Maximize the $\triangle \mathrm{P}$ by using a pressure infuser (either a pressure bag, or better yet, a rapid infuser system); can increase infusion rates by up to $3 x$!

VISCOSITY OF FLUID

Viscosity depends on the temperature of the fluid; Use a fluid warmer (which is part of a rapid infuser system) and make sure it is actually working!

EXTENSIONS/CONNECTORS

Each additional connection can reduce flow by up to 30%.
Remove caps, connectors, and extra extension sets.

INTRAOSSEOUS

Flow determined by bone location more than needle.

- Tibial is comparable to long 18 gauge PIV
- Humeral is comparable to long 16 gauge PIV

Typical flow rates $=50-100 \mathrm{ml} / \mathrm{min} \mathrm{w} /$ pressure infuser.

Increase up to $3 x$ by applying 300 mmHg of pressure

VOID ACIDOSIS

- Acidosis inhibits clotting \& decreases contractility.
- Provide sufficient MV to correct metabolic acidosis. Goal pH >7.2

